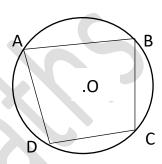
Class 10-Mathematics

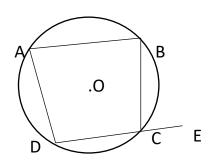
Instructions for students: The notes provided must be copied to the Maths copy and then do the homework in the same copy.

Chapter 15


Circles

Cyclic properties of circles

Theorem 1: The sum of each pair of opposite angles of a cyclic quadrilateral is 180°.


$$\angle$$
 ACB+ \angle BAD = 180⁰

Converse: If the sum of opposite angles of a quadrilateral is 180°, then it is a cyclic quadrilateral.

Theorem 2: An exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.

Converse: If an exterior angle of a quadrilateral is Equal to the opposite interior angle then the quadrilateral is cyclic.

Exercise 15.2

3. b)
$$\angle$$
 BAD = \angle BCE (An ext. Angle of a cyclic quad.= the int. opp. Angle)

$$\angle$$
 BAD = \angle 80°

i)
$$\angle$$
 CAD = $80 - 25 = 55^{\circ}$

ii)
$$\angle$$
 CBD = \angle CAD = 55 $^{\circ}$ (Angles in the same segment)

iii)
$$\angle$$
 BDC = \angle BAC = 25⁰

$$\angle ABD = \angle ACD = 25^{\circ}$$

$$\angle ADB = 180 - (\angle BAD + \angle ABD)$$

$$= 180 - (80 + 25) = 75^{\circ}$$

$$\angle ADC = \angle ADB + \angle BDC$$

= $75^{\circ} + 25^{\circ} = 100^{\circ}$

6. a) $r = 30^{\circ}$ (Angles in the same segment)

q = 2r (Angle at the centre is double the angle at the remaining part)

$$q = 60^{0}$$

 $p + r = 180^{\circ}$ (Sum of opp. Angles of cyclic quadrilateral)

$$p = 180 - r = 180 - 30 = 150^{\circ}$$

$$p = 150^{\circ} q = 60^{\circ} r = 30^{\circ}$$

12. \angle ABC + \angle AEC = 180° (Sum of opp. Angles of cyclic quad.)

$$\angle$$
 ABC \angle =180 - \angle AEC =180 - 50 = 130

 \angle ABE =90° (Angle in a semicircle)

i)
$$\angle$$
 CBE = \angle ABC - \angle CBE
= 130 - 90 = 40°

ii)
$$\angle$$
 CDE + \angle CBE = 180° (Sum of opp. Angles of cyclic quad.)
 \angle CDE = 180 – 40
= 140°

iii)
$$\angle$$
 AEB = \angle BEC = $\frac{50}{2}$ = 25° (AB = AC, Equal chords subtend equal Angles at the rem. Part of the circle)

 \angle AOB = 2 AEB (Angle at the centre is double the angle at the

Rem. Part of the circle)

$$\triangle$$
AOB = 2× 25 = 50°

Home Work:

- Solve Exercise 15.2 Questions 1,3, 5, 7,10, 14, 16 in the Maths copy.
- Practise all questions from exercise 15.2